MIE444 - Mechatronics Principles

Final Project Report

Group 1:

Karim Mansour

Max Mizrahi -

Jesse Chudnow

Qilong Cheng

December 15, 2022

1006152725

1005706149

1004251711

1003834103

1.0 Executive Summary

Our team built a robot to autonomously navigate a predefined maze, with the ultimate
goal of being able to locate a wooden block and deliver it to a dropoff location.

We missed the first milestone of the project as hours before the competition, our
breadboard shorted with all the electronics on it. An ongoing problem we had with the
initial design was difficulty wiring, partially due to the layout of the robot but also due to
the wires not fitting firmly in the breadboard. As a result, we resorted to using superglue
to hold wires in place which seems to be conductive when heated. This caused a short
between the 12V and ground lines, causing both motor drivers and most of the
ultrasonic sensors to be destroyed. Our team had a working simulation for milestone 1
which we submitted in place of actually competing.

We redesigned the robot completely after the failure of the first robot. The new design
put ease of wiring, assembly, and maintenance at the forefront. Also, due to the lack of
time until the second milestone, laser cutting was used more extensively than the first
design. The robot exceeded our expectations, completing the second milestone without
any failures or need for preliminary trials. We did note that due to our algorithm, we
may have needed to speed up the motors for the third milestone.

For the third milestone, a gripper was added to the robot. Some redesign was needed
such as moving the back, left and right ultrasonic sensors to the top level to make room
for the gripper. Our gripper was designed to accommodate a 2"x2"x2” wooden block,
which in retrospect was a mistake. We chose this size block as it works best with an
ultrasonic sensor. However, we should have used a 1”x1”x1” block and a TOF sensor
instead. This would have simplified the gripping mechanism and lowered the height of
the robot which was only 5 mm under the 300 mm limit. The first iteration of the gripper
used a four bar parallelogram powered by a high torque servo. Due to oversized holes
in the prints, the design did not work reliably. The day before the third milestone, we
switched to using a mechanically simpler design in which a pinion drove a rack to push
the block against a fixed gripper. This mechanism also proved finicky as it snapped
right before our first trial, although we were able to glue it back together and ultimately
succeed with very minimal intervention.

2.0 Detailed Rover Control Strategy

The rover control strategy uses the following terminology and coordinate system:
- Atile’ is a 12x12in square in the maze, as shown in Figure 2.0-1.
- An ‘orthogonal’ orientation is orthogonal to the grid of the maze; aligned either
straight up, down, left, or right relative to the maze.
- The coordinate (3, 6) is the center of the maze tile 3 down from the top, 6 right
from the left. This coordinate system is shown in Figure 2.0-1.

Y ; " | Orients:
X 1 p) 3 | A 5 6 7 8 Orients:

1wz E Wi E i 5 . Uth
e vzl T L R3
! ! I I [—
4- R | s :
j B A - 5,2
| | |

W

YAl

¥

- .

Figure 2.0-1: Maze Coordinate System

When developing the algorithms, the following design principles were used:

- Design simple systems and add complexity as needed. Don’t start with a
complex system, as it may be sensitive to all components working properly and it
will be difficult to debug and modify.

- Distrust the physical robot and increase trust as needed. Don’t assume the
sensors are precise or even accurate, don’t assume the motors are even
remotely reliable, and to the greatest extent possible only rely on sensor values
when they were measured under ‘best case’ conditions.

The system that arises from these principles is very slow, very cautious, but also very
safe—even if everything goes wrong at any point, it's able to recover. However, we have
a time limit of five minutes, so throughout the development process, we evaluated which
physical components were most reliable, and redesigned the algorithm to ‘trust’ those
components more to speed things up. Examples of this will be apparent below.

Part of why this ‘distrust until proven otherwise’ principle was used is that much of the
code was written much earlier than the hardware was built; it had weeks of testing in the
simulator, but none in a physical device. With dramatic hardware redesigns and testing
data ongoing, it was considered safest to assume that no part of the hardware was
guaranteed to actually work. The simulator was used with percentage errors at
unrealistically high values—while they were later lowered somewhat, even now the
physical robot behaves better than the simulated one (as stepper motors were used,
which drive quite straight compared to the horizontal error setting in the simulator, and
as real ultrasonics can be calibrated by adjusting for experimental measurement curves
to get the error down).

2.1 Obstacle Avoidance

In order to ensure this project can be completed properly, obstacle avoidance was
critical to get right, as it both helps the robot avoid crashing into walls and enables other
components in the algorithm to function as intended.

The first and most important assumption made was: the robot will never drive straight. A
lot of factors contribute to this, but ultimately there were only two methods of resolution
the team came up with when figuring out how to solve this problem. The first method
was using some type of analog controller (PID etc.) to ensure that during movement it
would try to move as straight as it can, but was quickly discarded due to its complexity.
The second method was conducting movement checks and using a mixture of
trigonometry with discrete steps of motion to dynamically fix the robot’s position as it
moved, which is the method we chose.

This algorithm works on a basis of distrusting the robot’s position and angle, mainly due
to two factors: motors being desynced, and frictional losses or other contributing factors.
While moving ‘straight forward’, the algorithm divides the forward movement into a
series of discrete steps. With each step, it attempts to follow the wall to correct errors of
distance from the wall and angle error relative to an orthogonal orientation. The
movement of the robot is mapped below in Figure 2.1-1:

a: Angle error due to frictional ~ 8: Angle error due to motor

—— > = i .
ultrasonic measurement losses or other errors movement mismatch

Angle needed to make the

\ .
Actual Movement\ 2(al + 6) robot face the center again

Distance (H) Next movement angle & path

... of travel, correction angle

. Desired \
. Movement
\\ Distance (X) \

\ \\
Y

}

Figure 2.1-1: The figure above displays the positional situation of the robot in
consideration of all the displacement and angular errors that would occur. Blue arrows
are ultrasonic measurements. Theta represents a deliberate turn to correct for
distance-to-wall error, Alpha represents unintentional angle error that existed at the start
of the movement step.

By using simple trigonometry and solving for Theta and Alpha, distance-to-wall error
and angle error could be solved and rectified. How this algorithm works is as follows:
the ultrasonics will be checked on all four sides. A target ‘step size’ of distance to move
forward in one step is calculated (typically 3 inches); if the front ultrasonic detects an
imminent collision, or if we’re about to move into the center of the next tile (such that the
center of the tile is 6 inches + (some multiple of 1ft) from the forward wall), the step size
is adjusted for safety and stopping in the center of the tile.

Side values are measured and compared with each other to determine which distance
should be used as the reference (the shorter ultrasonic measurement is taken as more
precise), with a special case if both measurements indicate that there’s a wall on both
sides (in a corridor, use both ultrasonics in tandem for additional precision). The robot
determines its distance to the reference wall, compared to the ideal distance to be in the
center lane of the tile; this is our measured distance-to-wall error. There is a caveat—this
method assumes that angle error (Alpha) is zero; it has been found to be reliable for
small Alpha, and sanity checks were placed on the calculations to prevent radical
movements due to not-yet-corrected Alpha values.

The robot calculates the angle Theta it should turn to move diagonally, such that it
moves ‘forward’ the desired movement value and normal to the wall a distance that
corrects the distance-to-wall error. It drives that distance, then straightens up (turns
-Theta).

Between each incremental movement, the robot measures side ultrasonic distances
again; it compares the expected change in distance-to-wall error (should have dropped
to 0 error if Alpha was 0) to the actual in distance-to-wall error to calculate Alpha, the
actual angle error; it rotates to correct Alpha.

In effect, distance-to-wall error is fixed before each movement step, and angle error is
fixed after each movement step. With each movement step, it continues to correct for
remaining and additional errors, improving its alignment with the orthogonal orientation
and the center of the lane with each movement. Using this, the robot perfectly travels
without hitting any object and ensuring it's centered at all times.

There is an edge case that breaks this, however—and in a maze, everything is made of
edge cases, so it had to be fixed. In certain cases where there is a single guiding wall
which switches sides during a step, or around certain corners, the wall-following could
get confused, veering a couple inches off course or following around a corner. By
combining wall following with positional information, it was possible to disable wall
following for certain individual movement steps to correct these issues; this is covered in
more detail in section 2.4 below.

2.2 Localization and Navigation

The initial basic concept for localization was based on using four ultrasonics—one in
each orthogonal direction—and measuring adjacent walls. The ‘adjacent’ is key; while
the ultrasonics could theoretically measure the distances to walls much farther away,
distance measurements become less precise at greater distances; a £10% error that
might only be +1in at 10in distance increases to +4in at 40in; we didn’t want to trust the
measurements under anything other than best case conditions.

There was also an IMU which could measure angle, but we didn’'t want to use it due to
initial concerns that they might be unreliable.

The robot ‘scans’ the adjacent walls, assigning the tile a ‘code’ based on whether the
path to each adjacent tile was open or closed; it didn’t attempt to quantify how many
tiles it could travel in each direction; only open or closed. The ‘codes’ for a tile are in

binary; 4 bits, with each bit representing one of the four directions; this format is shown
in Table 2.2-1.

Table 2.2-1: Binary representation of maze tile
Bit 3 (dec8) Bit 2 (dec4) Bit 1 (dec2) Bit O (dec1)

Right wall closed Bottom wall closed | Left wall closed Top wall closed

Using this format, we can ‘hardcode’ the layout of the maze; this is shown in Figure
2.2-1, with wall-codes for each tile written in based on reference orientation pointing up.
Code 15 means ‘all walls are closed’ and was used for blocked tiles inside the maze
area.

Y > :
1 5 6 7 SW‘ Orients:

7 3
w|5 | 9|15/ %115 1 RefU, 0

2|2 fee|15|6 505 8 |Adty
3|20(15 % |15 {15 |10 |15 J10 |
A

6

X

i

1
1 Ed
2

4

v

5;4:5

- .

Figure 2.2-1: Binary representation of the maze, written here in decimal

5 112 |15 | ®

The motivation for this format for a tile is that we can rotate our frame of reference by
rotating the binary number (shifts each bit right or left, and moves the rightmost/leftmost
bit to the leftmost/rightmost position; done in Matlab with the bitror or bitrol function).
This is especially useful because, under our initial assumption that we couldn’t trust the
compass, when the robot starts localizing, it doesn’t know what direction it’s facing. We
had developed a way for the compass to line up with an orthogonal orientation based on
ultrasonic measurements, but this didn’t tell the robot which orthogonal orientation this
was—this method of lining up isn’t detailed further in this report, as it was later eliminated
from the final methodology.

If the robot were starting in the bottom-right tile, we’d expect it to measure tile-code
(based on adjacent walls) of 14 if its frame of reference was oriented up. But if, for

example, its frame of reference were pointed left, it would measure 13-but rotating
binary ‘13’ clockwise once (corresponding to rotating our reference frame to point up)
gives 14.

The robot knows what its tile looks like without knowing orientation, and it knows what
the maze looks like (for any orientation; it can rotate the maze map as needed).
However, this (usually) isn’t enough to localize—there’s only 1 point on the maze where
there’s a unique match for a single tile even if you don’t know orientation (point (1, 6),
code 0, the 4-way intersection). The solution is to map multiple tiles.

The following is an example. For this example, for the sake of simplicity assume the
robot knows its ‘global’ orientation at all times—as previously described, it actually
wouldn’t and it would need to check all four possible orientations for a unique match,
which would probably need to move an extra tile.

The robot starts at a random tile. It measures the tile, and it's code 12 (open up and
left). There are two different tiles with code 12 on the map in Figure 2.2-1; the robot
could be in either one. The robot chooses to move up (this isn’t a random choice; there
is a predefined scheme for choosing path based on avoiding retracing steps and turns,
but the impact is very small even compared to a random choice). The robot moves up 1
tile (12in), using wall following and obstacle avoidance, and measures it again. Now it
sees code 10. There are three places in the maze with code 10, but only 1 place with a
code 10 above a code 12, position (3, 6) in Figure 2.2-1. The robot knows where it is,
and localization has finished.

Under the hood, it's rather more complicated—there’s a lot of sanity checks, the ability to
map out arbitrarily large regions of the local maze, tracking of current orientation relative
to starting orientation, etc, but these are mere implementation details.

Through testing, it was decided that localization was taking too long; there’s a time limit,
and even moving 1 extra tile during localization eats up too much time, both to move to
that tile, then to move back towards the target destination if it happened to be the wrong
way to go. It was found during testing that the IMU could be made reliable to better than
+30° (this was done by disabling the magnetometer and relying on gyroscope and
accelerometer, then calibrating the starting position of the gyroscope when powering up
the robot before placing it in the maze). The algorithm was changed to ‘trust’ the IMU;
instead of starting up, needing to align to an orthogonal direction based on a lengthy
process using ultrasonics, then spend extra time localizing and then verifying which way
it was facing, it could immediately align to an orthogonal (closely enough that the angle
correction built into obstacle avoidance could take it from there), and know which

orientation it had, speeding up the whole process. In practice, the robot was able to
localize accurately with at most only a single 1-tile movement, whereas before it had
taken up to 3.

Once the robot had localized, navigation was relatively easy by relying on obstacle
avoidance and knowing its position. At any point, the robot doesn’t need to know its
whole route—only its current position, and therefore its next step. The list of ‘next steps’
for any current position for a given end point is simple enough that it was hard coded;
for an example, see Figure 2.2-2, a diagram of ‘next steps’ for what adjacent tile to
move to to ultimately reach the bottom-right dropoff zone.

Y 8

X 1 2 3 45 6 7 8 Orients:
1 ﬁiﬁ-ﬁﬂ L—p E*,) 4 IJiO
e G —— e |
& —?T_! : ! ! '
> — ,.L | | f v D2
D ek

Figure 2.2-2: Route to bottom-right dropoff zone

The basic loop is as follows:

- Compare what the robot thinks the position should be (based on localization and
previous movement) to the actual walls. This is done by measuring the wall code
of the current tile, and comparing it to the map. If it doesn’t match, restart the
localization process. In practice, localization was made fast enough and
movement reliable enough that this didn’t cause too much delay.

- If we've relocalized, or the believed position is consistent with the wall
measurements, get the next movement direction (and adjacent position) we
move to on our route.

- Move 1 tile in that direction and update our believed position. Obstacle avoidance
is utilized, and augmented by our knowledge of our position in the maze.

- Repeat; or, if we've reached our final destination, move on to the next stage.

2.3 Block Delivery

The process of picking up and delivering the block was expected to be straightforward,
and would utilize two dedicated ultrasonics: a low forward facing ultrasonic for detecting
the block, and a downward facing ultrasonic inside the gripper to determine whether the
block was in the gripping area. The plan was, the robot would lower the gripper once it
entered the loading zone, scan for the block in an area in front of it (by comparing the
ultrasonic measurement from the lower and upper forward ultrasonics as it rotated), and
if found, move straight towards it until the downward ultrasonic saw the block. It would
then close and raise the gripper. If it didn’t see the block in the initial sweep, it would
advance into the loading zone and do several much wider sweeps; if it still couldn’t find
it, it would ‘abandon’ the block (assuming that either the block finding wasn’t working or
there was no block in the zone), and leave the loading zone to go to the dropoff zone.

This ran into an issue we hadn’t expected; while it worked fine in a simulator, the
physical robot was vulnerable to what we refer to as the ‘angle effect’ for ultrasonics.
When an ultrasonic measures a surface at an angle, it gives reasonably accurate
readings until ~30° tilt, at which point the measurements are chaotic, giving wildly
different values. We had mistakenly assumed that while the measurement to the block
and wall would be vulnerable to angle effect during the sweep, while both
measurements would be chaotic, they would be the same (chaotic) value when both the
lower and upper forward ultrasonic were measuring to the wall-they would be
measuring the same surface at the same distance and same angle, so it had seemed
reasonable they would read the same number. Then, if one saw the block, we simply
had to check for a different reading.

It was not until too late that we discovered this assumption was incorrect—-there were
delays in building the physical gripper that meant we could only test the hardware very
late into the process. As it turned out, even when measuring the same surface at an
angle, the two forward ultrasonics gave drastically different values, invalidating this
method for detecting the block; a failure to abide by the original design principle of
avoiding assumptions about hardware had led to issues down the line. An alternative
strategy was quickly developed; there was insufficient time to test it fully with the real
robot.

As the block position was known beforehand to be in one of five places, the new
algorithm implemented utilizes a mixture of brute force with smart checks. The algorithm
uses a path following method, as the robot reaches the loading zone, it will lower the
gripper and scan the entire region around the entrance to see if it can find the block, if it
finds it then it heads towards it and grips it, if not it moves forward as the gripper is
lowered and continuously scans using the two block ultrasonics (one pointing forward

and one on the gripper pointing down), once the ultrasonic detects the block the gripper
closes and the robot returns to normal functionality in order to traverse to the drop off
zone, centering itself and placing the block down. The path that the robot follows during
the brute force pickup method is outlined below for both the bottom and left side
entrance of the loading zone, shown below in Figure 2.3-1.

Y 8 = Possible Block Location

4

.. o

Figure 2.3-1: The path the robot follows in both entrances to try and find the block.
2.4 Integration

The code was split into two independent halves: the Matlab code which did the bulk of
the control, and the Arduino code loaded onto the robot. The Arduino code was
configured to act as a simple drone, acting on basic commands received over bluetooth
and sending a response when finished. Commands were limited to basic things, such
as ‘read left ultrasonic’, not advanced actions like ‘move forward 1 tile, following the
wall’, which were handled in Matlab. The simulator was modified to support many of the
same commands, allowing testing in the simulator using much of the same code.

The code is divided into several interdependent modules, mainly: localization, wall
following, navigation, and block handling, in addition to small modules such as bluetooth

communication. The interdependency meant that care had to be taken in integration; for
example, localization determines our position, and depends on our ability to drive
straight without hitting anything, however, wall following depends on knowing our
position to disable wall following behavior at key points for improved reliability.

The main code that controlled overall robot behavior was mainly responsible for tracking
our stage at the maze (ex. Initial localization, going to loading zone, going to drop off),
invoking the relevant module, and linking things together. The first stage was always
initial localization; even in deliverable 1, where we only needed to avoid collisions, the
position information was useful for wall following. Initial localization is ‘cautious’;
because it doesn’t know its location for wall following while still localizing, it uses a
modified motion algorithm which uses additional sensor measurements and movements
to re-center along the tile with each tile-movement. This slows things down, but
improves reliability.

Once we have position, the main navigation loop begins. We follow the basic loop given
in section 2.2 above; there’s a hard-coded list of positions where wall following should
be disabled for part of the movement (ex. the middle 3-inches of the movement between
(1,4) and (2,4), where the wall switches sides). If we didn’t disable wall following, actual
collision is still rare, but it leads to the robot veering off course and needing to
re-localize more frequently.

Once we reach our end-position for the current stage (such as by reaching the loading
zone), we activate the relevant module (such as block-handling), send signals and log
information, and once that completes, we begin navigation along the next route.
Whenever there is a discrepancy in position, we quickly re-localize.

The main loop also has a variety of ‘quality-of-life’ features, such as the ability to send
manual commands to the robot before starting the automated process (used for testing
and to set target drop off zones during setup), the ability to write to a log file on the hard
drive, and the ability to communicate with either the simulator or real robot using the
same code.

3. Final Results

We were not ready to test our physical robot for the first milestone due to an electrical
short occurring hours before the competition. However, the MATLAB simulation
performed perfectly in numerous starting positions even with unrealistically high sensor
and motor error.

For the second milestone, we redesigned our robot to minimize its diameter by
increasing its height. We also switched from an Arduino Uno to an Arduino Mega. This
allowed us to give the ultrasonic sensors their own echo and trigger pins and minimize
the signal interference in the low level code. We tested our robot in the Myhal Centre
maze the day before the test day. It functioned perfectly on the first trial and only ran
into one problem during further testing due to lack of motor calibration. On the test day,
our robot continued to function perfectly and completed the maze on the first trial in 3
minutes. This was faster than we had expected and was a result of the ideal starting
position which allowed us to localize within the starting square.

For the third milestone, we missed our first trial as our gripper snapped in multiple
places minutes before our trial time. We had tested the gripper extensively so we knew
that it gripped the block with sufficient strength.

We used multiple glues and epoxies to mend the gripper in preparation for our delayed
trial. We were not able to test the block finding algorithm in the maze due to lack of time
but it did work in the simulator. The entire integration of localization, block detection,
block pickup, and block dropoff was working in the simulator. However, we knew there
would be issues in the actual maze so the first trial for us was more of a practice run
than a test. The robot functioned better than expected at picking up the block.
However, due to an issue we had with our servos causing them to jitter significantly, the
block was dropped after the robot had exited the loading zone. The robot continued to
the dropoff point successfully, albeit getting partially stuck on the way. We believe the
robot got stuck as we didn’t have time to calibrate the motors and sensors. For our
second trial, we increased the clamping force on the block to prevent accidental
loosening. Additionally, we modified the algorithm to raise the gripper before turning in
the loading zone as we were very close to hitting walls in the first trial. This proved to
be a mistake as in the second trial, the robot lowered the gripper onto the block. Once
we moved the block from under the gripper, the robot picked up the block and delivered
it to the drop off zone in approximately 4 minutes without any further intervention.

4. Discussion

4.1 Mechanical Changes

The mechanical design went through the most vigorous modifications. The initial design
was too compact and did not put wiring into consideration. Moreover, despite the
compactness, the overall radius of the robot was still too large that it created a lot of
difficulty navigating the tight maze. The structural support in the initial design was made
so that each layer is dependent on the previous layer. For example, the top layer is
supported by the bottom layer via the battery pack. Although the design achieved
compactness, the assembly process’s difficulty was not accounted for. Thus when
constructing the robot, the top layer was not able to be completed due to the lack of
structural support from the battery pack. Moreover, once the battery pack was fixed in
place, we were not able to access the wiring anymore. The first design can be referred
to in Figure 4.1:

Figure 4.1. Initial robot CAD design and the final assembly

Therefore, the team had a drastic redesign after the first milestone to correct all the
mistakes. The overall size of the robot became our biggest strength in the contests as
we managed to reduce the size from 205mm in diameter down to 170mm. This reduced
35mm was tremendously helpful in reducing the chance of hitting obstacles. Second,
the design was made more modular so that the team can construct it layer by layer.
Upon assembly, each component did not interfere with one another and can be tested
and disassembled individually. Third, we moved all the electrical wiring to the top layer
for more space and easier modifications, as can be seen in the image below:

Figure 4.2. CAD design of the final robot and the robot’s final assembly

The initial gripper design was made out of two four bar linkages that were powered by
two high-torque servos. This design failed several times due to the low rigidity from the
3D-printed linkage parts. Additionally, the joints for the bar linkages were designed to
use M3 screws and nuts instead of bearings, thus creating a lot of friction. Due to the
accumulated frictions and vibration movements, the parts tended to get loose, causing
the gripper to fail to pick up the block. Overall, due to the high complexity and large
number of moving parts, the team abandoned the design and modified it into a
rack-and-pinion mechanism as shown in the following:

Figure 4.3 Initial 4-bar linkage gripper design versus the final rack and pinion
gripper design

The updated gripper design was drastically simplified and was directly driven by the
high-torque servos without reducing the gripping torque. This allowed the team to tune
the servo turning angles more easily without breaking the linkages. The resulting gripper
was also able to retract back into the robot body without increasing the effective robot
diameter as well.

Finally, the team noticed the ultrasonic sensor on the gripper was not able to detect the
block accurately. This could be resulted from the interference from the gripper or the
tilted angle of the block in respect to the ultrasonic sensor. For future improvement, a
time of flight sensor (VL6180) could be implemented to replace the ultrasonic sensor for
distance measuring.

4.2 Electrical Changes

In the first milestone, having the idea to simplify the design as much as possible, we
decided to use an Arduino Uno with all the ultrasonic sensors sharing the same echo
pin. In addition, speakers and high-voltage LED lights were added for special effects
outputs. The design was sound on paper, but the team quickly realized that there were
not enough I/O pins on the Uno if more sensors were to be added in the later
milestones. To control the speakers and the high-voltage LEDs, MOSFETs were needed
to control the ON/OFF signals, which increases the number of components and the
likelihood of failing on the circuit part. Moreover, each MOSFET requires an additional
signal output from the microcontroller, in other words, an additional digital pin will be
taken up from the Uno. Finally, when the ultrasonic sensors were sharing the same
echo pin, not only from the Arduino code side the readings from each sensor would be
delayed, also the signal from the echo pin would interfere with each other, unable to
generate accurate distance data. The team tried to add a diode to each echo pin to
prevent unstable signals to resolve the issue but without success.

Therefore, we simplified the design by replacing the uno with a mega for its multiplied
I/0O pins and additional memory. In this case, we were able to attach each individual
ultrasonic sensor with a trig and echo pinout from the microcontroller. Speakers and
high-voltage LEDs were abandoned to eliminate the need for MOSFETSs. Instead,
normal low-current LEDs were installed for outputting signals. In the end, the team
managed to organize the wiring within one small breadboard and the circuit was reliable
enough that no modification was required by the team.

4.3 Firmware Changes

One of the main changes in software is the implementation of the 9-axis IMU sensor.
Although compass is built into the IMU module, the team quickly found out it was hard
to calibrate the sensor each time the program was re-uploaded and the accuracy was
not ideal for our use case. On the other hand, the built-in gyro was extremely accurate,
but it did not give us the orientation in respect to the ground frame. Hence, the team
modified the software with an additional orientation calibration for the robot — the robot
was calibrated manually when powered up before being set in the maze. In this case,
instead of investigating the ground truth orientation in respect to the world frame, having
the angle difference is enough for us to tell the robot’s world-frame orientation.

The greatest strength from the software department was the ability to relocate the robot
when the robot was placed into another location manually. This helped us greatly in the
actual testing — not only saved us a vast amount of time without needing to reset the
robot, it also gave the robot the ability to relocate itself anytime after the block was
picked up or when the robot was disorientated in the maze by unforeseen incidents.

4.4 Learning Experiences

The biggest lesson learned for the team is to have a better project timeline in the future;
getting hardware finished earlier would have allowed more testing and tuning of the
software. In milestone three, we could not get the block locating software tested until the
actual first trial. Within the limited time between trial one and trial two, we managed to
modify the code quickly enough to allow better gripping and locating movements in the
final trial. Given more testing time, the results could have been a perfect run.

From the robot design aspect, we learnt that modularity and ease of assembly is crucial
to speed up the testing process. Hardware is unreliable and is required to be swapped
out easily and frequently. Having a design that is easily accessible to modify the wiring
and change the broken components is crucial to expedite the design process. On top of
that, the team also learnt and put into practice various fabrication techniques for wiring
the electronics. Despite incidents of the battery short-circuiting and the Arduino board
frying, the team eventually had the working robot with the wires well organized.
However, battery hazards and safety protection circuit features are to be considered
and should be added in the future designs.

Overall, the team gained great skills in mechatronic design, and after comparing our
design with other teams’, the greatest take away is that there is no standard solution for
a mobile robot design, and only by consistently iterating and improving can the design
withstand the unpredictability of the real-world.

5.0 Bill of Materials:

The following is the bill of materials for components included in the final robot. All parts
were purchased by the team, with the exception of the bluetooth module and the two
servos, which were borrowed.

Item Unit Price | Quantity Cost
Stepper 51450 . 528.99
Servo 522 .49 2 544 98
Wheel 55.40 2 $10.80
Caster 52.68 1 52.68
Battery 52399 1 52399
Ultrasonic 5240 B 514 .40
Arduino Mega 52995 1 52995
Breadboard 57.90 1 57.90
LED 50.31 2 50.63
Bluetooth - HCOS 512.99 1 %£12.99
MU - BNOOSS 53374 1 53374
Buck Converter 57.00 2 514.00
Motor Driver - A4988 55.11 . 51021
Jumper Wires 51118 1 $11.18
5246.43

