
 MIE444 - Mechatronics Principles 

 Final Project Report 

 Group 1: 

 Karim Mansour  -  1006152725 

 Max Mizrahi  -  1005706149 

 Jesse Chudnow  -  1004251711 

 Qilong Cheng  -  1003834103 

 December 15, 2022 



 1.0 Executive Summary 

 Our team built a robot to autonomously navigate a predefined maze, with the ultimate 
 goal of being able to locate a wooden block and deliver it to a dropoff location. 
 We missed the first milestone of the project as hours before the competition, our 
 breadboard shorted with all the electronics on it.  An ongoing problem we had with the 
 initial design was difficulty wiring, partially due to the layout of the robot but also due to 
 the wires not fitting firmly in the breadboard.  As a result, we resorted to using superglue 
 to hold wires in place which seems to be conductive when heated.  This caused a short 
 between the 12V and ground lines, causing both motor drivers and most of the 
 ultrasonic sensors to be destroyed.  Our team had a working simulation for milestone 1 
 which we submitted in place of actually competing. 

 We redesigned the robot completely after the failure of the first robot.  The new design 
 put ease of wiring, assembly, and maintenance at the forefront.  Also, due to the lack of 
 time until the second milestone, laser cutting was used more extensively than the first 
 design.  The robot exceeded our expectations, completing the second milestone without 
 any failures or need for preliminary trials.  We did note that due to our algorithm, we 
 may have needed to speed up the motors for the third milestone. 

 For the third milestone, a gripper was added to the robot.  Some redesign was needed 
 such as moving the back, left and right ultrasonic sensors to the top level to make room 
 for the gripper.  Our gripper was designed to accommodate a 2”x2”x2” wooden block, 
 which in retrospect was a mistake.  We chose this size block as it works best with an 
 ultrasonic sensor.  However, we should have used a 1”x1”x1” block and a TOF sensor 
 instead.  This would have simplified the gripping mechanism and lowered the height of 
 the robot which was only 5 mm under the 300 mm limit. The first iteration of the gripper 
 used a four bar parallelogram powered by a high torque servo.  Due to oversized holes 
 in the prints, the design did not work reliably.  The day before the third milestone, we 
 switched to using a mechanically simpler design in which a pinion drove a rack to push 
 the block against a fixed gripper.  This mechanism also proved finicky as it snapped 
 right before our first trial, although we were able to glue it back together and ultimately 
 succeed with very minimal intervention. 



 2.0 Detailed Rover Control Strategy 

 The rover control strategy uses the following terminology and coordinate system: 
 -  A ‘tile’ is a 12x12in square in the maze, as shown in Figure 2.0-1. 
 -  An ‘orthogonal’ orientation is orthogonal to the grid of the maze; aligned either 

 straight up, down, left, or right relative to the maze. 
 -  The coordinate (3, 6) is the center of the maze tile 3 down from the top, 6 right 

 from the left. This coordinate system is shown in Figure 2.0-1. 

 Figure 2.0-1: Maze Coordinate System 

 When developing the algorithms, the following design principles were used: 
 -  Design simple systems and add complexity as needed. Don’t start with a 

 complex system, as it may be sensitive to all components working properly and it 
 will be difficult to debug and modify. 

 -  Distrust the physical robot and increase trust as needed. Don’t assume the 
 sensors are precise or even accurate, don’t assume the motors are even 
 remotely reliable, and to the greatest extent possible only rely on sensor values 
 when they were measured under ‘best case’ conditions. 

 The system that arises from these principles is very slow, very cautious, but also very 
 safe–even if everything goes wrong at any point, it’s able to recover. However, we have 
 a time limit of five minutes, so throughout the development process, we evaluated which 
 physical components were most reliable, and redesigned the algorithm to ‘trust’ those 
 components more to speed things up. Examples of this will be apparent below. 



 Part of why this ‘distrust until proven otherwise’ principle was used is that much of the 
 code was written much earlier than the hardware was built; it had weeks of testing in the 
 simulator, but none in a physical device. With dramatic hardware redesigns and testing 
 data ongoing, it was considered safest to assume that no part of the hardware was 
 guaranteed to actually work. The simulator was used with percentage errors at 
 unrealistically high values–while they were later lowered somewhat, even now the 
 physical robot behaves better than the simulated one (as stepper motors were used, 
 which drive quite straight compared to the horizontal error setting in the simulator, and 
 as real ultrasonics can be calibrated by adjusting for experimental measurement curves 
 to get the error down). 

 2.1 Obstacle Avoidance 

 In order to ensure this project can be completed properly, obstacle avoidance was 
 critical to get right, as it both helps the robot avoid crashing into walls and enables other 
 components in the algorithm to function as intended. 

 The first and most important assumption made was: the robot will never drive straight. A 
 lot of factors contribute to this, but ultimately there were only two methods of resolution 
 the team came up with when figuring out how to solve this problem. The first method 
 was using some type of analog controller (PID etc.) to ensure that during movement it 
 would try to move as straight as it can, but was quickly discarded due to its complexity. 
 The second method was conducting movement checks and using a mixture of 
 trigonometry with discrete steps of motion to dynamically fix the robot’s position as it 
 moved, which is the method we chose. 

 This algorithm works on a basis of distrusting the robot’s position and angle, mainly due 
 to two factors: motors being desynced, and frictional losses or other contributing factors. 
 While moving ‘straight forward’, the algorithm divides the forward movement into a 
 series of discrete steps. With each step, it attempts to follow the wall to correct errors of 
 distance from the wall and angle error relative to an orthogonal orientation. The 
 movement of the robot is mapped below in Figure 2.1-1: 



 Figure 2.1-1: The figure above displays the positional situation of the robot in 
 consideration of all the displacement and angular errors that would occur. Blue arrows 
 are ultrasonic measurements. Theta represents a deliberate turn to correct for 
 distance-to-wall error, Alpha represents unintentional angle error that existed at the start 
 of the movement step. 

 By using simple trigonometry and solving for Theta and Alpha, distance-to-wall error 
 and angle error could be solved and rectified. How this algorithm works is as follows: 
 the ultrasonics will be checked on all four sides. A target ‘step size’ of distance to move 
 forward in one step is calculated (typically 3 inches); if the front ultrasonic detects an 
 imminent collision, or if we’re about to move into the center of the next tile (such that the 
 center of the tile is 6 inches + (some multiple of 1ft) from the forward wall), the step size 
 is adjusted for safety and stopping in the center of the tile. 

 Side values are measured and compared with each other to determine which distance 
 should be used as the reference (the shorter ultrasonic measurement is taken as more 
 precise), with a special case if both measurements indicate that there’s a wall on both 
 sides (in a corridor, use both ultrasonics in tandem for additional precision). The robot 
 determines its distance to the reference wall, compared to the ideal distance to be in the 
 center lane of the tile; this is our measured distance-to-wall error. There is a caveat–this 
 method assumes that angle error (Alpha) is zero; it has been found to be reliable for 
 small Alpha, and sanity checks were placed on the calculations to prevent radical 
 movements due to not-yet-corrected Alpha values. 



 The robot calculates the angle Theta it should turn to move diagonally, such that it 
 moves ‘forward’ the desired movement value and normal to the wall a distance that 
 corrects the distance-to-wall error. It drives that distance, then straightens up (turns 
 -Theta). 

 Between each incremental movement, the robot measures side ultrasonic distances 
 again; it compares the expected change in distance-to-wall error (should have dropped 
 to 0 error if Alpha was 0) to the actual in distance-to-wall error to calculate Alpha, the 
 actual angle error; it rotates to correct Alpha. 

 In effect, distance-to-wall error is fixed before each movement step, and angle error is 
 fixed after each movement step. With each movement step, it continues to correct for 
 remaining and additional errors, improving its alignment with the orthogonal orientation 
 and the center of the lane with each movement. Using this, the robot perfectly travels 
 without hitting any object and ensuring it’s centered at all times. 

 There is an edge case that breaks this, however–and in a maze, everything is made of 
 edge cases, so it had to be fixed. In certain cases where there is a single guiding wall 
 which switches sides during a step, or around certain corners, the wall-following could 
 get confused, veering a couple inches off course or following around a corner. By 
 combining wall following with positional information, it was possible to disable wall 
 following for certain individual movement steps to correct these issues; this is covered in 
 more detail in section 2.4 below. 

 2.2 Localization and Navigation 

 The initial basic concept for localization was based on using four ultrasonics–one in 
 each orthogonal direction–and measuring adjacent walls. The ‘adjacent’ is key; while 
 the ultrasonics could theoretically measure the distances to walls much farther away, 
 distance measurements become less precise at greater distances; a ±10% error that 
 might only be ±1in at 10in distance increases to ±4in at 40in; we didn’t want to trust the 
 measurements under anything other than best case conditions. 

 There was also an IMU which could measure angle, but we didn’t want to use it due to 
 initial concerns that they might be unreliable. 

 The robot ‘scans’ the adjacent walls, assigning the tile a ‘code’ based on whether the 
 path to each adjacent tile was open or closed; it didn’t attempt to quantify how many 
 tiles it could travel in each direction; only open or closed. The ‘codes’ for a tile are in 



 binary; 4 bits, with each bit representing one of the four directions; this format is shown 
 in Table 2.2-1. 

 Table 2.2-1: Binary representation of maze tile 

 Bit 3 (dec8)  Bit 2 (dec4)  Bit 1 (dec2)  Bit 0 (dec1) 

 Right wall closed  Bottom wall closed  Left wall closed  Top wall closed 

 Using this format, we can ‘hardcode’ the layout of the maze; this is shown in Figure 
 2.2-1, with wall-codes for each tile written in based on reference orientation pointing up. 
 Code 15 means ‘all walls are closed’ and was used for blocked tiles inside the maze 
 area. 

 Figure 2.2-1: Binary representation of the maze, written here in decimal 

 The motivation for this format for a tile is that we can  rotate our frame of reference  by 
 rotating the binary number  (shifts each bit right  or left, and moves the rightmost/leftmost 
 bit to the leftmost/rightmost position; done in Matlab with the  bitror  or  bitrol  function). 
 This is especially useful because, under our initial assumption that we couldn’t trust the 
 compass, when the robot starts localizing, it  doesn’t  know what direction it’s facing  . We 
 had developed a way for the compass to line up with an orthogonal orientation based on 
 ultrasonic measurements, but this didn’t tell the robot which orthogonal orientation this 
 was–this method of lining up isn’t detailed further in this report, as it was later eliminated 
 from the final methodology. 

 If the robot were starting in the bottom-right tile, we’d expect it to measure tile-code 
 (based on adjacent walls) of 14 if its frame of reference was oriented up. But if, for 



 example, its frame of reference were pointed left, it would measure 13–but rotating 
 binary ‘13’ clockwise once (corresponding to rotating our reference frame to point up) 
 gives 14. 

 The robot knows what its tile looks like without knowing orientation, and it knows what 
 the maze looks like (for any orientation; it can rotate the maze map as needed). 
 However, this (usually) isn’t enough to localize–there’s only 1 point on the maze where 
 there’s a unique match for a single tile even if you don’t know orientation (point (1, 6), 
 code 0, the 4-way intersection). The solution is to map multiple tiles. 

 The following is an example. For this example, for the sake of simplicity assume the 
 robot knows its ‘global’ orientation at all times–as previously described, it actually 
 wouldn’t and it would need to check all four possible orientations for a unique match, 
 which would probably need to move an extra tile. 

 The robot starts at a random tile. It measures the tile, and it’s code 12 (open up and 
 left). There are two different tiles with code 12 on the map in Figure 2.2-1; the robot 
 could be in either one. The robot chooses to move up (this isn’t a random choice; there 
 is a predefined scheme for choosing path based on avoiding retracing steps and turns, 
 but the impact is very small even compared to a random choice). The robot moves up 1 
 tile (12in), using wall following and obstacle avoidance, and measures it again. Now it 
 sees code 10. There are three places in the maze with code 10, but only 1 place with a 
 code 10 above a code 12, position (3, 6) in Figure 2.2-1. The robot knows where it is, 
 and localization has finished. 

 Under the hood, it’s rather more complicated–there’s a lot of sanity checks, the ability to 
 map out arbitrarily large regions of the local maze, tracking of current orientation relative 
 to starting orientation, etc, but these are mere implementation details. 

 Through testing, it was decided that localization was taking too long; there’s a time limit, 
 and even moving 1 extra tile during localization eats up too much time, both to move to 
 that tile, then to move back towards the target destination if it happened to be the wrong 
 way to go. It was found during testing that the IMU could be made reliable to better than 
 ±30° (this was done by disabling the magnetometer and relying on gyroscope and 
 accelerometer, then calibrating the starting position of the gyroscope when powering up 
 the robot before placing it in the maze). The algorithm was changed to ‘trust’ the IMU; 
 instead of starting up, needing to align to an orthogonal direction based on a lengthy 
 process using ultrasonics, then spend extra time localizing and then verifying which way 
 it was facing, it could immediately align to an orthogonal (closely enough that the angle 
 correction built into obstacle avoidance could take it from there), and know which 



 orientation it had, speeding up the whole process. In practice, the robot was able to 
 localize accurately with at most only a single 1-tile movement, whereas before it had 
 taken up to 3. 

 Once the robot had localized, navigation was relatively easy by relying on obstacle 
 avoidance and knowing its position. At any point, the robot doesn’t need to know its 
 whole route–only its current position, and therefore its  next step  . The list of ‘next steps’ 
 for any current position for a given end point is simple enough that it was hard coded; 
 for an example, see Figure 2.2-2, a diagram of ‘next steps’ for what adjacent tile to 
 move to to ultimately reach the bottom-right dropoff zone. 

 Figure 2.2-2: Route to bottom-right dropoff zone 

 The basic loop is as follows: 
 -  Compare what the robot thinks the position should be (based on localization and 

 previous movement) to the actual walls. This is done by measuring the wall code 
 of the current tile, and comparing it to the map. If it doesn’t match, restart the 
 localization process. In practice, localization was made fast enough and 
 movement reliable enough that this didn’t cause too much delay. 

 -  If we’ve relocalized, or the believed position is consistent with the wall 
 measurements, get the next movement direction (and adjacent position) we 
 move to on our route. 

 -  Move 1 tile in that direction and update our believed position. Obstacle avoidance 
 is utilized, and augmented by our knowledge of our position in the maze. 

 -  Repeat; or, if we’ve reached our final destination, move on to the next stage. 

 2.3 Block Delivery 



 The process of picking up and delivering the block was expected to be straightforward, 
 and would utilize two dedicated ultrasonics: a low forward facing ultrasonic for detecting 
 the block, and a downward facing ultrasonic inside the gripper to determine whether the 
 block was in the gripping area. The plan was, the robot would lower the gripper once it 
 entered the loading zone, scan for the block in an area in front of it (by comparing the 
 ultrasonic measurement from the lower and upper forward ultrasonics as it rotated), and 
 if found, move straight towards it until the downward ultrasonic saw the block. It would 
 then close and raise the gripper. If it didn’t see the block in the initial sweep, it would 
 advance into the loading zone and do several much wider sweeps; if it still couldn’t find 
 it, it would ‘abandon’ the block (assuming that either the block finding wasn’t working or 
 there was no block in the zone), and leave the loading zone to go to the dropoff zone. 

 This ran into an issue we hadn’t expected; while it worked fine in a simulator, the 
 physical robot was vulnerable to what we refer to as the ‘angle effect’ for ultrasonics. 
 When an ultrasonic measures a surface at an angle, it gives reasonably accurate 
 readings until ~30° tilt, at which point the measurements are chaotic, giving wildly 
 different values. We had mistakenly assumed that while the measurement to the block 
 and wall would be vulnerable to angle effect during the sweep, while both 
 measurements would be chaotic, they would be the same (chaotic) value when both the 
 lower and upper forward ultrasonic were measuring to the wall–they would be 
 measuring the same surface at the same distance and same angle, so it had seemed 
 reasonable they would read the same number. Then, if one saw the block, we simply 
 had to check for a different reading. 

 It was not until too late that we discovered this assumption was incorrect–there were 
 delays in building the physical gripper that meant we could only test the hardware very 
 late into the process. As it turned out, even when measuring the same surface at an 
 angle, the two forward ultrasonics gave drastically different values, invalidating this 
 method for detecting the block; a failure to abide by the original design principle of 
 avoiding assumptions about hardware had led to issues down the line. An alternative 
 strategy was quickly developed; there was insufficient time to test it fully with the real 
 robot. 

 As the block position was known beforehand to be in one of five places, the new 
 algorithm implemented utilizes a mixture of brute force with smart checks. The algorithm 
 uses a path following method, as the robot reaches the loading zone, it will lower the 
 gripper and scan the entire region around the entrance to see if it can find the block, if it 
 finds it then it heads towards it and grips it, if not it moves forward as the gripper is 
 lowered and continuously scans using the two block ultrasonics (one pointing forward 



 and one on the gripper pointing down), once the ultrasonic detects the block the gripper 
 closes and the robot returns to normal functionality in order to traverse to the drop off 
 zone, centering itself and placing the block down. The path that the robot follows during 
 the brute force pickup method is outlined below for both the bottom and left side 
 entrance of the loading zone, shown below in Figure 2.3-1. 

 Figure 2.3-1: The path the robot follows in both entrances to try and find the block. 

 2.4 Integration 

 The code was split into two independent halves: the Matlab code which did the bulk of 
 the control, and the Arduino code loaded onto the robot. The Arduino code was 
 configured to act as a simple drone, acting on basic commands received over bluetooth 
 and sending a response when finished. Commands were limited to basic things, such 
 as ‘read left ultrasonic’, not advanced actions like ‘move forward 1 tile, following the 
 wall’, which were handled in Matlab. The simulator was modified to support many of the 
 same commands, allowing testing in the simulator using much of the same code. 

 The code is divided into several interdependent modules, mainly: localization, wall 
 following, navigation, and block handling, in addition to small modules such as bluetooth 



 communication. The interdependency meant that care had to be taken in integration; for 
 example, localization determines our position, and depends on our ability to drive 
 straight without hitting anything, however, wall following depends on knowing our 
 position to disable wall following behavior at key points for improved reliability. 

 The main code that controlled overall robot behavior was mainly responsible for tracking 
 our stage at the maze (ex. Initial localization, going to loading zone, going to drop off), 
 invoking the relevant module, and linking things together. The first stage was always 
 initial localization; even in deliverable 1, where we only needed to avoid collisions, the 
 position information was useful for wall following. Initial localization is ‘cautious’; 
 because it doesn’t know its location for wall following while still localizing, it uses a 
 modified motion algorithm which uses additional sensor measurements and movements 
 to re-center along the tile with each tile-movement. This slows things down, but 
 improves reliability. 

 Once we have position, the main navigation loop begins. We follow the basic loop given 
 in section 2.2 above; there’s a hard-coded list of positions where wall following should 
 be disabled for part of the movement (ex. the middle 3-inches of the movement between 
 (1,4) and (2,4), where the wall switches sides). If we didn’t disable wall following, actual 
 collision is still rare, but it leads to the robot veering off course and needing to 
 re-localize more frequently. 

 Once we reach our end-position for the current stage (such as by reaching the loading 
 zone), we activate the relevant module (such as block-handling), send signals and log 
 information, and once that completes, we begin navigation along the next route. 
 Whenever there is a discrepancy in position, we quickly re-localize. 

 The main loop also has a variety of ‘quality-of-life’ features, such as the ability to send 
 manual commands to the robot before starting the automated process (used for testing 
 and to set target drop off zones during setup), the ability to write to a log file on the hard 
 drive, and the ability to communicate with either the simulator or real robot using the 
 same code. 



 3. Final Results 

 We were not ready to test our physical robot for the first milestone due to an electrical 
 short occurring hours before the competition. However, the MATLAB simulation 
 performed perfectly in numerous starting positions even with unrealistically high sensor 
 and motor error. 

 For the second milestone, we redesigned our robot to minimize its diameter by 
 increasing its height.  We also switched from an Arduino Uno to an Arduino Mega. This 
 allowed us to give the ultrasonic sensors their own echo and trigger pins and minimize 
 the signal interference in the low level code. We tested our robot in the Myhal Centre 
 maze the day before the test day. It functioned perfectly on the first trial and only ran 
 into one problem during further testing due to lack of motor calibration. On the test day, 
 our robot continued to function perfectly and completed the maze on the first trial in 3 
 minutes. This was faster than we had expected and was a result of the ideal starting 
 position which allowed us to localize within the starting square. 

 For the third milestone, we missed our first trial as our gripper snapped in multiple 
 places minutes before our trial time. We had tested the gripper extensively so we knew 
 that it gripped the block with sufficient strength. 

 We used multiple glues and epoxies to mend the gripper in preparation for our delayed 
 trial. We were not able to test the block finding algorithm in the maze due to lack of time 
 but it did work in the simulator.  The entire integration of localization, block detection, 
 block pickup, and block dropoff was working in the simulator.  However, we knew there 
 would be issues in the actual maze so the first trial for us was more of a practice run 
 than a test.  The robot functioned better than expected at picking up the block. 
 However, due to an issue we had with our servos causing them to jitter significantly, the 
 block was dropped after the robot had exited the loading zone.  The robot continued to 
 the dropoff point successfully, albeit getting partially stuck on the way.  We believe the 
 robot got stuck as we didn’t have time to calibrate the motors and sensors.  For our 
 second trial, we increased the clamping force on the block to prevent accidental 
 loosening.  Additionally, we modified the algorithm to raise the gripper before turning in 
 the loading zone as we were very close to hitting walls in the first trial.  This proved to 
 be a mistake as in the second trial, the robot lowered the gripper onto the block.  Once 
 we moved the block from under the gripper, the robot picked up the block and delivered 
 it to the drop off zone in approximately 4 minutes without any further intervention. 



 4. Discussion 

 4.1 Mechanical Changes 

 The mechanical design went through the most vigorous modifications. The initial design 
 was too compact and did not put wiring into consideration. Moreover, despite the 
 compactness, the overall radius of the robot was still too large that it created a lot of 
 difficulty navigating the tight maze. The structural support in the initial design was made 
 so that each layer is dependent on the previous layer. For example, the top layer is 
 supported by the bottom layer via the battery pack. Although the design achieved 
 compactness, the assembly process’s difficulty was not accounted for. Thus when 
 constructing the robot, the top layer was not able to be completed due to the lack of 
 structural support from the battery pack. Moreover, once the battery pack was fixed in 
 place, we were not able to access the wiring anymore. The first design can be referred 
 to in Figure 4.1: 

 Figure 4.1. Initial robot CAD design and the final assembly 

 Therefore, the team had a drastic redesign after the first milestone to correct all the 
 mistakes. The overall size of the robot became our biggest strength in the contests as 
 we managed to reduce the size from 205mm in diameter down to 170mm. This reduced 
 35mm was tremendously helpful in reducing the chance of hitting obstacles. Second, 
 the design was made more modular so that the team can construct it layer by layer. 
 Upon assembly, each component did not interfere with one another and can be tested 
 and disassembled individually. Third, we moved all the electrical wiring to the top layer 
 for more space and easier modifications, as can be seen in the image below: 



 Figure 4.2. CAD design of the final robot and the robot’s final assembly 

 The initial gripper design was made out of two four bar linkages that were powered by 
 two high-torque servos. This design failed several times due to the low rigidity from the 
 3D-printed linkage parts. Additionally, the joints for the bar linkages were designed to 
 use M3 screws and nuts instead of bearings, thus creating a lot of friction. Due to the 
 accumulated frictions and vibration movements, the parts tended to get loose, causing 
 the gripper to fail to pick up the block. Overall, due to the high complexity and large 
 number of moving parts, the team abandoned the design and modified it into a 
 rack-and-pinion mechanism as shown in the following: 

 Figure 4.3 Initial 4-bar linkage gripper design versus the final rack and pinion 
 gripper design 

 The updated gripper design was drastically simplified and was directly driven by the 
 high-torque servos without reducing the gripping torque. This allowed the team to tune 
 the servo turning angles more easily without breaking the linkages. The resulting gripper 
 was also able to retract back into the robot body without increasing the effective robot 
 diameter as well. 



 Finally, the team noticed the ultrasonic sensor on the gripper was not able to detect the 
 block accurately. This could be resulted from the interference from the gripper or the 
 tilted angle of the block in respect to the ultrasonic sensor. For future improvement, a 
 time of flight sensor (VL6180) could be implemented to replace the ultrasonic sensor for 
 distance measuring. 

 4.2 Electrical Changes 

 In the first milestone, having the idea to simplify the design as much as possible, we 
 decided to use an Arduino Uno with all the ultrasonic sensors sharing the same echo 
 pin. In addition, speakers and high-voltage LED lights were added for special effects 
 outputs. The design was sound on paper, but the team quickly realized that there were 
 not enough I/O pins on the Uno if more sensors were to be added in the later 
 milestones. To control the speakers and the high-voltage LEDs, MOSFETs were needed 
 to control the ON/OFF signals, which increases the number of components and the 
 likelihood of failing on the circuit part. Moreover, each MOSFET requires an additional 
 signal output from the microcontroller, in other words, an additional digital pin will be 
 taken up from the Uno. Finally, when the ultrasonic sensors were sharing the same 
 echo pin, not only from the Arduino code side the readings from each sensor would be 
 delayed, also the signal from the echo pin would interfere with each other, unable to 
 generate accurate distance data. The team tried to add a diode to each echo pin to 
 prevent unstable signals to resolve the issue but without success. 

 Therefore, we simplified the design by replacing the uno with a mega for its multiplied 
 I/O pins and additional memory. In this case, we were able to attach each individual 
 ultrasonic sensor with a trig and echo pinout from the microcontroller. Speakers and 
 high-voltage LEDs were abandoned to eliminate the need for MOSFETs. Instead, 
 normal low-current LEDs were installed for outputting signals. In the end, the team 
 managed to organize the wiring within one small breadboard and the circuit was reliable 
 enough that no modification was required by the team. 

 4.3 Firmware Changes 

 One of the main changes in software is the implementation of the 9-axis IMU sensor. 
 Although compass is built into the IMU module, the team quickly found out it was hard 
 to calibrate the sensor each time the program was re-uploaded and the accuracy was 
 not ideal for our use case. On the other hand, the built-in gyro was extremely accurate, 
 but it did not give us the orientation in respect to the ground frame. Hence, the team 
 modified the software with an additional orientation calibration for the robot – the robot 
 was calibrated manually when powered up before being set in the maze. In this case, 
 instead of investigating the ground truth orientation in respect to the world frame, having 
 the angle difference is enough for us to tell the robot’s world-frame orientation. 



 The greatest strength from the software department was the ability to relocate the robot 
 when the robot was placed into another location manually. This helped us greatly in the 
 actual testing – not only saved us a vast  amount of  time without needing to reset the 
 robot, it also gave the robot the ability to relocate itself anytime after the block was 
 picked up or when the robot was disorientated in the maze by unforeseen incidents. 

 4.4 Learning Experiences 

 The biggest lesson learned for the team is to have a better project timeline in the future; 
 getting hardware finished earlier would have allowed more testing and tuning of the 
 software. In milestone three, we could not get the block locating software tested until the 
 actual first trial. Within the limited time between trial one and trial two, we managed to 
 modify the code quickly enough to allow better gripping and locating movements in the 
 final trial. Given more testing time, the results could have been a perfect run. 

 From the robot design aspect, we learnt that modularity and ease of assembly is crucial 
 to speed up the testing process. Hardware is unreliable and is required to be swapped 
 out easily and frequently. Having a design that is easily accessible to modify the wiring 
 and change the broken components is crucial to  expedite  the design process. On top of 
 that, the team also learnt and put into practice various fabrication techniques for wiring 
 the electronics. Despite incidents of the battery short-circuiting and the Arduino board 
 frying, the team eventually had the working robot with the wires well organized. 
 However, battery hazards and safety protection circuit features are to be considered 
 and should be added in the future designs. 

 Overall, the team gained great skills in mechatronic design, and after comparing our 
 design with other teams’, the greatest take away is that there is no standard solution for 
 a mobile robot design, and only by consistently iterating and improving can the design 
 withstand the unpredictability of the real-world. 



 5.0 Bill of Materials: 

 The following is the bill of materials for components included in the final robot. All parts 
 were purchased by the team, with the exception of the bluetooth module and the two 
 servos, which were borrowed. 


